

Evaluation of Different Sampling Methods to Monitor Population Size in Biofloc-Based, Intensive Shrimp Culture Systems

Jeffrey F. Brunson, Deliah Arrington, and John W. Leffler

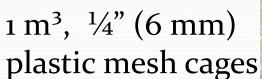
South Carolina Department of Natural Resources James A. Waddell Mariculture Center Bluffton, South Carolina

Population Assessment

- Efficient feeding strategy
 - Reduce feed costs
 - Improve water quality
 - Reduce solid waste disposal or treatment
- Better predict crop size
 - Marketing
 - Satisfied customers
- Increased profitability \$\$\$
- How many shrimp do I need to feed?

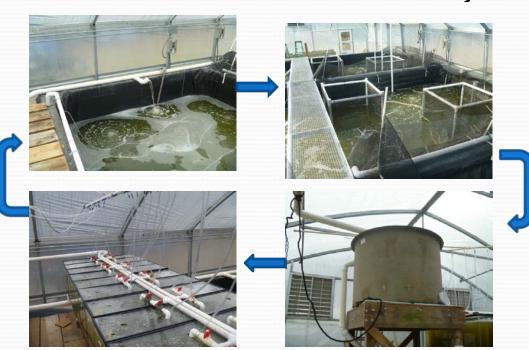
Population Estimation

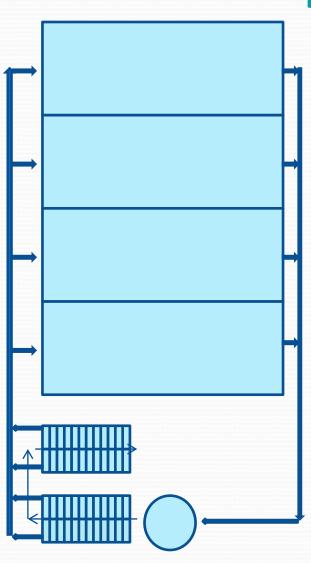
- In-situ
 - Cast nets
 - Feeding trays
 - Standard mortality curve
 - Side-scan sonar
- Raceway advantages and limitations
 - Shrimp are more confined
 - Space constraints



Sampling Methods

o.8 m², 1/8" sq mesh (3 mm) lift nets





Design

- 30.5 m² raceways (66 cm mean depth => 20 m³ volume), linked.
- 122 cm mixing tank
- 48- 6oL aquaria
- Common return line to raceways

Stocking

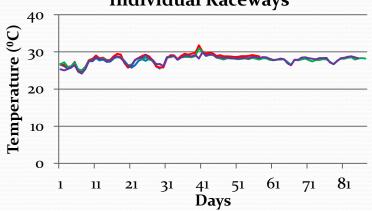
- Raceways- 150 shrimp/m²
 - $(250/m^3)$, by weight
- Cages 150/m², by weight
- 20 shrimp per aquarium, 333/m³ (112/m²), counted
- Size at stocking 2.31 ± 0.85 g

Management

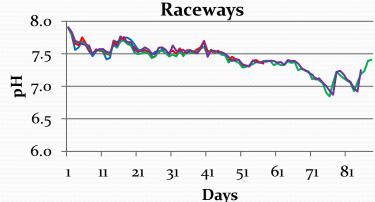
- Shrimp fed Zeigler HyperIntensive 35, three times per day at the same rate
- Temperature, DO, pH and salinity checked twice daily
 - Each raceway, 6 aquaria (randomly selected daily)
- NH₃-N, NO₂-N, alkalinity, pH, turbidity, TSS, VSS, PO₄, total chlorophyll and chlorophyll a checked weekly.

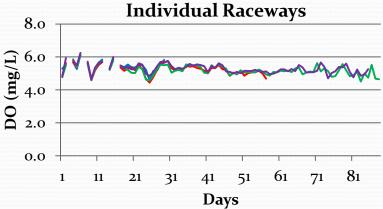
Harvest and Sampling

- One raceway harvested every 4 weeks.
- Cages harvested one day prior to raceway harvest.
- 4 lift nets deployed, shrimp acclimated, feed broadcast with seed spreader; after 10 minutes, raised nets, and shrimp counted and returned. Repeated twice for a total of 12 samples.

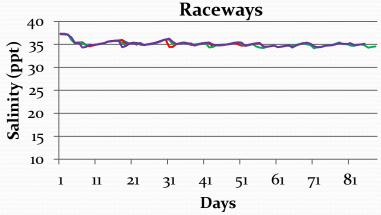


- On day of raceway harvest, 12 aquaria (randomly selected at beginning) also harvested.
- Survival and mean weight determined for raceways, cages and aquaria.


Daily Water Quality of Raceways

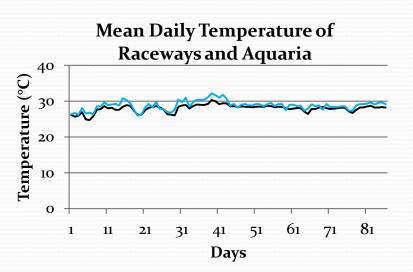


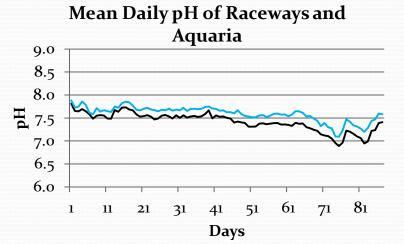
Mean Daily pH of Individual

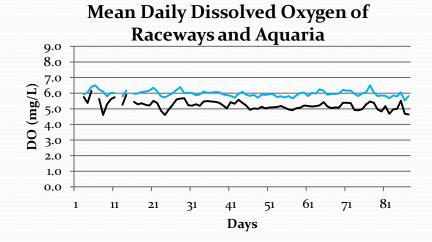


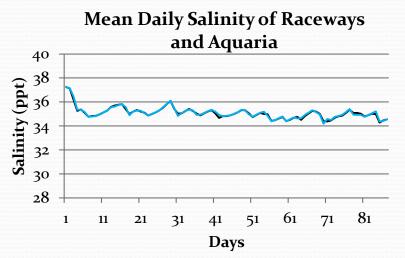
RRW₄ -RRW5

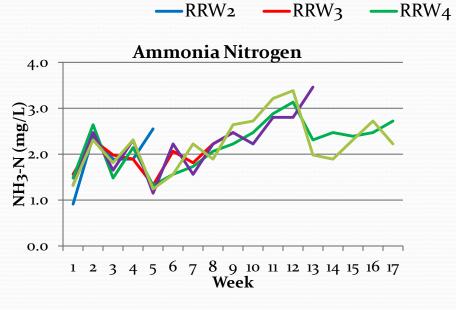
Mean Daily Dissolved Oxygen of **Individual Raceways**

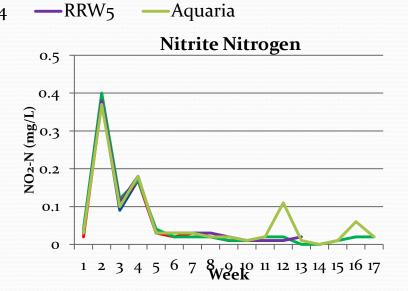


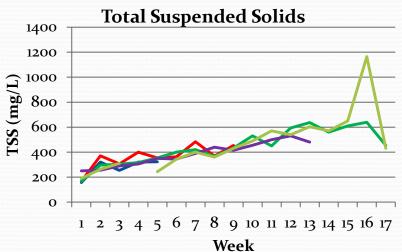

Mean Daily Salinity of Individual

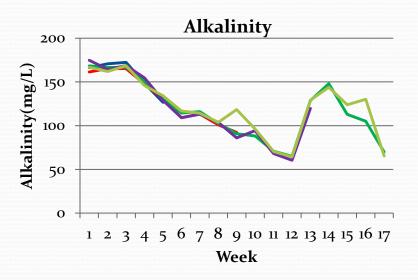

Daily Water Quality of Raceways and Aquaria


--- Raceways









Weekly Water Quality

Shrimp Survival by Sampling Method 0-28 days

Days	Raceways	Cages (mean ± sd)	Aquaria (mean ± sd)	Lift Nets (mean ± sd)
28	97.2	93.0 ±1.4 n=2	88.3 ± 7.5* n=12, P=0.002**	55.4 ± 13.5 [*] n= 11, P<0.001

^{*} Denotes a statistically significant difference from raceway survival using one-sample t-test (α =0.05).

Aquaria underestimate population by 9.2% Lift nets underestimate population by 43% Cages underestimate population by 4.3%

^{**}Failed Shapiro-Wilk Normality Test

Shrimp Survival by Sampling Method 0-56 days

Days	Raceways	Cages (mean ± sd)	Aquaria (mean ± sd)	Lift Nets (mean ± sd)
29	97.2	93.0 ±1.4 n=2	88.3 ± 7.5* n=12	55.4 ± 13.5* n= 11
56	97.3	94.4 ± 2.2 n=3	74.2 ± 13.6* n=12, P<0.001	53.1 ± 4.4* n=10, P<0.001

^{*} Denotes a statistically significant difference from raceway survival using one-sample t-test (α =0.05).

Aquaria underestimate population by 23.7% Lift nets underestimate population by 45.4% Cages underestimate population by 3.0%.

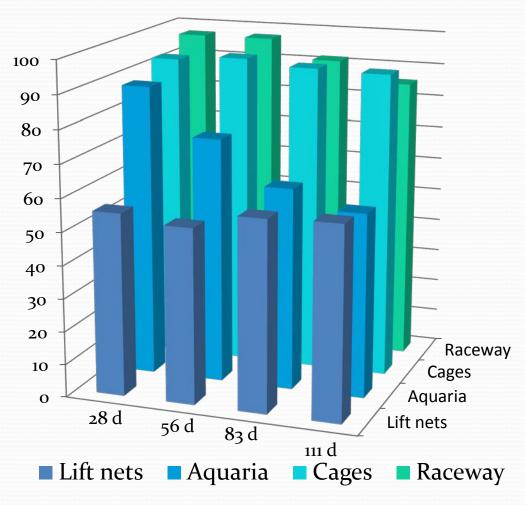
Shrimp Survival by Sampling Method 0-83 days

Days	Raceways	Cages (mean ± sd)	Aquaria (mean ± sd)	Lift Nets (mean ± sd)
28	97.2	93.0 ±1.4 n=2	88.3 ± 7.5* n=12	55.4 ± 13.5* n= 11
56	97.3	94.4 ± 2.2 n=3	74.2 ± 13.6* n=12	53.1 ± 4.4* n=10
83	91.5	92.7 ± 6.1 n=2	61.2 ± 11.5* n=12, P<0.001	57.8 ± 3.9* n=12, P<0.001

^{*} Denotes a statistically significant difference from raceway survival using one-sample t-test (α =0.05).

Aquaria underestimate population by 33.1% Lift nets underestimate population by 36.8% Cages **overestimate** population by 1.3%.

Shrimp Survival by Sampling Method 0-111


Days	Raceway	Cages (mean ± sd)	Aquaria (mean ± sd)	Lift Nets (mean ± sd)
28	97.2	93.0 ±1.4 n=2	88.3 ± 7.5* n=12	55.4 ± 13.5* n= 11
56	97.3	94.4 ± 2.2 n=3	74.2 ± 13.6* n=12	53.1 ± 4.4* n=10
83	91.5	92.7 ± 6.1 n=2	61.2 ± 11.5* n=12	57.8 ± 3.9* n=12
111	85.6	92.2 ± 5.4 n=3	55.8 ± 13.3* n=12,P<0.001	58.4 ± 3.3* n=12,P<0.001

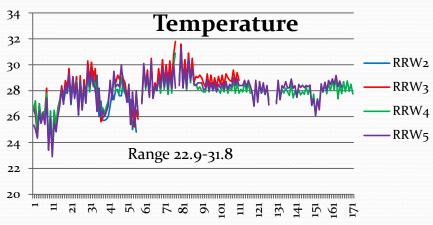
^{*} Denotes a statistically significant difference from raceway survival using one-sample t-test (α =0.05).

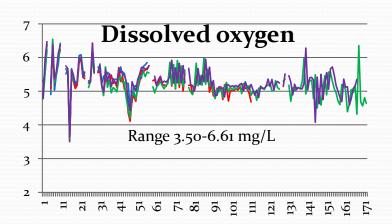
Aquaria underestimate population by 34.8% Lift nets underestimate population by 31.8% Cages **overestimate** population by 7.7%.

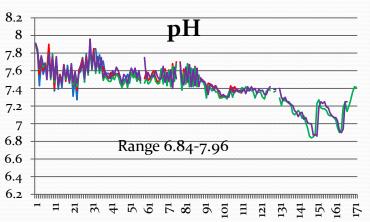
Summary

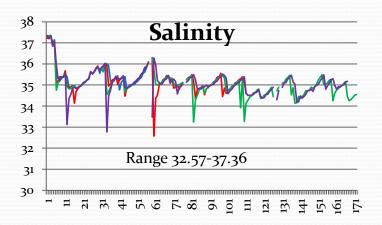
Shrimp Survival

- Cages are most reliable method.
- Survival in cages remains high and stable.
- Survival in aquaria decreases over time and is highly variable.
- 60 L aquaria cannot support 20 shrimp; 10 may be better.
- Lift nets consistently estimate survival at 53-58% throughout the growout cycle.

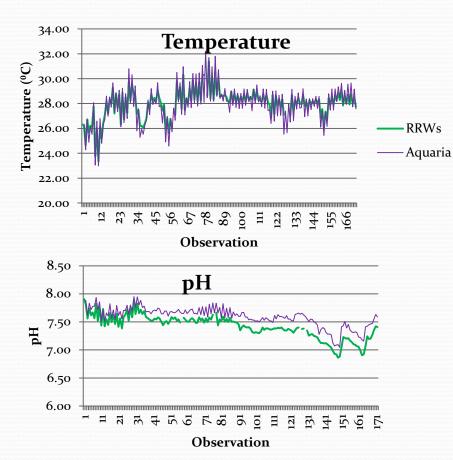

Improving Cage Sampling Methods

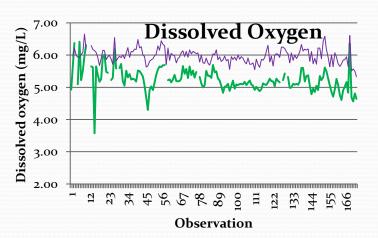

- Further investigate cage size
 - Minimize obstructions to water flow
- Increase number of cages to improve power
- Refine sampling protocol

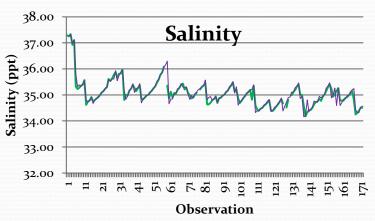



Thank you

Daily Water Quality







Daily Water Quality

